Last Name:
I.D. Number:

First Name:
Section:
/27

1. For each of the following, determine the generating series of the set with respect to the weight function, and express the series as a simplified rational expression.
(a) $\{3$ marks $\}$ Set: $\mathbb{N}_{0}=\{0,1,2,3, \ldots\}$. Weight function: $w(a)=\left\{\begin{array}{ll}a+1 & a \equiv 0(\bmod 3) \\ a & a \equiv 1(\bmod 3) \\ 2 a & a \equiv 2(\bmod 3)\end{array}\right.$.
(b) $\{3$ marks $\}$ Set: $\{1,2\} \times\{1, \ldots, 239\} \times \mathbb{N}_{0}$. Weight function: $w(a, b, c)=3 a+b+4 c$.
2. $\{5$ marks $\}$ Let $m \in \mathbb{N}_{0}$. Suppose we have an unlimited supply of nickels, dimes and quarters (they are worth $5,10,25$ cents each, respectively). How many ways can we make $m$ cents using these coins such that there are more quarters than dimes? Your solution must include the definition of a set and a weight function, and finding the relevant generating series. Your final answer may be expressed as the coefficient of a certain power series.
3. $\{8$ marks $\}$ For any integer $n \geq 0$, determine the number of compositions of $n$ with exactly 3 parts where exactly 2 of these parts are even. You need to define a relevant set, a weight function, determine a generating series, and then find an explicit formula for the answer. (Hint: Consider different cases.)
4. Let $q \geq 2$. For any $n \geq 0$, let $A_{n}$ be the set of all compositions of $n$ where every part is at least $q$, and let $B_{n}$ be the set of all compositions of $n$ where every part is either 1 or $q$. For example, when $q=3$, the compositions $(3,5,6,3,3)$ and $(10,10)$ are in $A_{20}$, while $(3,1,1,3,1,1,1,3,3,3)$ and $(3,3,3,3,3,3,1,1)$ are in $B_{20}$. (Note that the number of parts is not restricted.)
(a) $\{6$ marks $\}$ Using generating series, determine $\left|A_{n}\right|$ and $\left|B_{n}\right|$ as coefficients of some simplified power series.
(b) $\{2$ marks $\}$ Use your results in part (a) to prove that for all $n \geq 1,\left|A_{n}\right|=\left|B_{n}\right|-\left|B_{n-1}\right|$.
