MATH 239 Winter 2016: Assignment 3 Due: 10:00 AM, Friday January 29, 2016 in the dropboxes outside MC 4066

Last Name		Einst Name
Last mame.		r list Name.
I.D. Number:		Section:
Mark (For the marker only):	/27	

- 1. For each of the following, determine the generating series of the set with respect to the weight function, and express the series as a simplified rational expression.
 - (a) {3 marks} Set: $\mathbb{N}_0 = \{0, 1, 2, 3, ...\}$. Weight function: $w(a) = \begin{cases} a+1 & a \equiv 0 \pmod{3} \\ a & a \equiv 1 \pmod{3} \\ 2a & a \equiv 2 \pmod{3} \end{cases}$.

(b) {3 marks} Set: $\{1,2\} \times \{1,\ldots,239\} \times \mathbb{N}_0$. Weight function: w(a,b,c) = 3a + b + 4c.

2. {5 marks} Let $m \in \mathbb{N}_0$. Suppose we have an unlimited supply of nickels, dimes and quarters (they are worth 5, 10, 25 cents each, respectively). How many ways can we make m cents using these coins such that there are more quarters than dimes? Your solution must include the definition of a set and a weight function, and finding the relevant generating series. Your final answer may be expressed as the coefficient of a certain power series.

3. {8 marks} For any integer $n \ge 0$, determine the number of compositions of n with exactly 3 parts where exactly 2 of these parts are even. You need to define a relevant set, a weight function, determine a generating series, and then find an explicit formula for the answer. (Hint: Consider different cases.)

4. Let $q \ge 2$. For any $n \ge 0$, let A_n be the set of all compositions of n where every part is at least q, and let B_n be the set of all compositions of n where every part is either 1 or q. For example, when q = 3, the compositions (3, 5, 6, 3, 3) and (10, 10) are in A_{20} , while (3, 1, 1, 3, 1, 1, 1, 3, 3, 3) and (3, 3, 3, 3, 3, 3, 1, 1) are in B_{20} . (Note that the number of parts is not restricted.)

(a) {6 marks} Using generating series, determine $|A_n|$ and $|B_n|$ as coefficients of some simplified power series.

(b) {2 marks} Use your results in part (a) to prove that for all $n \ge 1$, $|A_n| = |B_n| - |B_{n-1}|$.